News & Events

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA

Enter the characters shown in the image.

User menu

You are here

Switching Nonparametric Regression Models

Tuesday, July 9, 2013 - 11:00
Camila P. Estevam de Souza
Statistics Seminar
Room 4192, Earth Sciences Building (2207 Main Mall)

We propose a methodology to analyze data arising from a curve that, over its domain, switches among J states. We consider a sequence of response variables, where each response y depends on a covariate x according to an unobserved state z. The states form a stochastic process and their possible values are j=1,...,J. If z equals j the expected response of y is one of J unknown smooth functions evaluated at x. We call this model a switching nonparametric regression model. We consider two types of analyses: a single realization case and a replicate case. In the single realization case, we consider one curve switching among J functions. In the replicate case, we have N curves, called replicates, switching between J functions. We develop an EM algorithm to estimate the parameters of the latent state process and the functions corresponding to the J states. We also obtain standard errors for the parameter estimates of the state process. We conduct simulation studies to analyze the frequentist properties of our estimates. We also apply the proposed methodology to two different data sets.