autoMALA: Locally adaptive Metropolis-adjusted Langevin algorithm
Miguel Biron-Lattes, Nikola Surjanovic, Saifuddin Syed, Trevor Campbell, Alexandre Bouchard-Côté (2024)
AISTATS (Accepted)
Automatic Regenerative Simulation via Non-Reversible Simulated Tempering
Miguel Biron-Lattes, Trevor Campbell, Alexandre Bouchard-Côté (2024)
Journal of the American Statistical Association (Accepted)
MCMC-driven learning
Alexandre Bouchard-Côté, Trevor Campbell, Geoff Pleiss, Nikola Surjanovic (2024)
Handbook of Markov Chain Monte Carlo (Accepted)
Cancer phylogenetic tree inference at scale from 1000s of single cell genomes
Sohrab Salehi, Fatemeh Dorri, Kevin Chern, Farhia Kabeer, Nicole Rusk, Tyler Funnell, Marc J Williams, Daniel Lai, Mirela Andronescu, Kieran R. Campbell, Andrew McPherson, Samuel Aparicio, Andrew Roth, Sohrab Shah, Alexandre Bouchard-Côté (2023)
PCI Math Comp Biol 3:1–38
Past, Present, and Future of Software for Bayesian Inference
Erik Štrumbelj, Alexandre Bouchard-Côté, Jukka Corander, Andrew Gelman, Håvard Rue, Lawrence Murray, Henri Pesonen, Martyn Plummer, Aki Vehtari (2023)
Statistical Science 39:46–61
SpatialSort: a Bayesian model for clustering and cell population annotation of spatial proteomics data
Eric Lee, Kevin Chern, Michael Nissen, Xuehai Wang, IMAXT Consortium, Chris Huang, Anita K Gandhi, Alexandre Bouchard-Côté, Andrew P Weng, Andrew Roth (2023)
Bioinformatics 39:i131–i139
Blang: Probabilitistic Programming for Combinatorial Spaces
Alexandre Bouchard-Côté, Kevin Chern, Davor Cubranic, Sahand Hosseini, Justin Hume, Matteo Lepur, Zihui Ouyang, Giorgio Sgarbi (2022)
Journal of Statistical Software 103:1–98
Pseudo-marginal Inference for CTMCs on Infinite Spaces via Monotonic Likelihood Approximations
Miguel Biron-Lattes, Alexandre Bouchard-Côté, Trevor Campbell (2022)
Journal of Computational and Graphical Statistics 32:513–527
Parallel Tempering With a Variational Reference
Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-Côté, Trevor Campbell (2022)
Advances in Neural Information Processing Systems 36 (NeurIPS) 36:565–577
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler and Dimension-Free Convergence Rates
George Deligiannidis, Daniel Paulin, Alexandre Bouchard-Côté, Arnaud Doucet (2021)
Annals of Applied Probability 31:2612–2662
Parallel Tempering on Optimized Paths
Saifuddin Syed, Vittorio Romaniello, Trevor Campbell, Alexandre Bouchard-Côté (2021)
International Conference on Machine Learning (ICML) 139:10033–10042
Analysis of high-dimensional Continuous Time Markov Chains using the Local Bouncy Particle Sampler
Tingting Zhao, Alexandre Bouchard-Côté (2021)
Journal of Machine Learning Research 22:1–41
Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC Scheme
Saifuddin Syed, Alexandre Bouchard-Côté, George Deligiannidis, Arnaud Doucet (2021)
Journal of Royal Statistical Society, Series B 84:321–350
Clonal fitness inferred from time-series modelling of single-cell cancer genomes
Sohrab Salehi, Farhia Kabeer, Nicholas Ceglia, Mirela Andronescu, Marc J. Williams, Kieran R. Campbell, Tehmina Masud, Beixi Wang, Justina Biele, Jazmine Brimhall, David Gee, Hakwoo Lee, Jerome Ting, Allen W. Zhang, Hoa Tran, Ciara O’Flanagan, Fatemeh Dorri, Nicole Rusk, Teresa Ruiz de Algara, So Ra Lee, Brian Yu Chieh Cheng, Peter Eirew, Takako Kono, Jenifer Pham, Diljot Grewal, Daniel Lai, Richard Moore, Andrew J. Mungall, Marco A. Marra, IMAXT Consortium, Andrew McPherson, Alexandre Bouchard-Côté, Samuel Aparicio, Sohrab P. Shah (2021)
Nature 595:585–590
Particle-Gibbs Sampling For Bayesian Feature Allocation Models
Andrew Roth, Alexandre Bouchard-Côté (2021)
Journal of Machine Learning Research 22:1–105
Slice Sampling for General Completely Random Measures
Peiyuan Zhu, Alexandre Bouchard-Côté, Trevor Campbell (2020)
Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI) 36:699–708
Exponential Ergodicity of the Bouncy Particle Sampler
George Deligiannidis, Alexandre Bouchard-Côté, Arnaud Doucet (2019)
Annals of Statistics 47:1268–1287
An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
Liangliang Wang, Shijia Wang, Alexandre Bouchard-Côté (2019)
Systematic Biology 69:155–183
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets
Robert Cornish, Paul Vanetti, Alexandre Bouchard-Côté, George Deligiannidis, Arnaud Doucet (2019)
International Conference on Machine Learning (ICML) 97:1351–1360
Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains
Sedigheh Zolaktaf, Frits Dannenberg, Erik Winfree, Alexandre Bouchard-Côté, Mark Schmidt, Anne Condon (2019)
The 25th International Conference on DNA Computing and Molecular Programming 25:80–99
The Bouncy Particle Sampler: A non-reversible rejection-free Markov chain Monte Carlo method
Alexandre Bouchard-Côté, Sebastian J. Vollmer, Arnaud Doucet (2018)
Journal of the American Statistical Association 113:855–867
Piecewise Deterministic Markov Processes for Scalable Monte Carlo on Restricted Domains
Joris Bierkens, Alexandre Bouchard-Côté, Arnaud Doucet, Andrew B Duncan, Paul Fearnhead, Thibaut Lienart, Gareth Roberts, Sebastian J Vollmer (2018)
Statistics and Probability Letters 136:148–154
Particle Gibbs split-merge sampling for Bayesian inference in mixture models
Alexandre Bouchard-Côté, Arnaud Doucet, Andrew Roth (2017)
Journal of Machine Learning Research 18:1–39
Divide-and-conquer with sequential Monte Carlo
Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, Thomas B. Schon, John Aston, Alexandre Bouchard-Côté (2017)
Journal of Computational and Graphical Statistics 26:445–458
Sequential Graph Matching with Sequential Monte Carlo
Seong-Hwan Jun, Samuel W.K. Wong, James V. Zidek, Alexandre Bouchard-Côté (2017)
AISTATS 20:1075–1084
Bayesian analysis of continuous time Markov chains with application to phylogenetic modelling
Tingting Zhao, Alex Cumberworth, Ziyu Wang, Joerg Gsponer, Nando de Freitas, Alexandre Bouchard-Côté (2015)
Bayesian Analysis 11:1203–1237
Bayesian phylogenetic inference using the combinatorial sequential Monte Carlo method
Liangliang Wang, Alexandre Bouchard-Côté, Arnaud Doucet (2015)
Journal of the American Statistical Association 110:1362–1374
Efficient continuous-time Markov chain estimation
Monir Hajiaghayi, Bonnie Kirkpatrick, Liangliang Wang, Alexandre Bouchard-Côté (2014)
International Conference on Machine Learning (ICML) 31:638–646
Sequential Monte Carlo (SMC) for Bayesian phylogenetics
Alexandre Bouchard-Côté (2014)
Bayesian phylogenetics: methods, algorithms, and applications 163–186
Memory (and time) efficient sequential Monte Carlo
Seong-Hwan Jun, Alexandre Bouchard-Côté (2014)
International Conference on Machine Learning (ICML) 31:514–522
Phylogenetic inference via sequential Monte Carlo
Alexandre Bouchard-Côté, Sriram Sankararaman, Michael I. Jordan (2012)
Systematic Biology 61:579–593
Entangled Monte Carlo
Seong-Hwan Jun, Liangliang Wang, Alexandre Bouchard-Côté (2012)
Advances in Neural Information Processing Systems 25 (NeurIPS) 25:2735–2743
Randomized pruning: efficiently calculating expectations in large dynamic programs
Alexandre Bouchard-Côté, Slav Petrov, Dan Klein (2009)
Advances in Neural Information Processing Systems 22 (NeurIPS) 22:144–152
Sampling alignment structure under a Bayesian translation model
John DeNero, Alexandre Bouchard-Côté, Dan Klein (2008)
Proceedings of the 2008 Conference on Empirical Methods on Natural Language Processing (EMNLP08) 13:314–323
Efficient inference in phylogenetic InDel trees
Alexandre Bouchard-Côté, Michael I. Jordan, Dan Klein (2008)
Advances in Neural Information Processing Systems 21 (NeurIPS) 21:177–184